Source code for discrete_optimization.knapsack.solvers.knapsack_lns_solver

#  Copyright (c) 2022 AIRBUS and its affiliates.
#  This source code is licensed under the MIT license found in the
#  LICENSE file in the root directory of this source tree.

import random
from enum import Enum
from typing import Any, Dict, Hashable, Mapping

from discrete_optimization.generic_tools.do_problem import (
    ParamsObjectiveFunction,
    build_aggreg_function_and_params_objective,
)
from discrete_optimization.generic_tools.hyperparameters.hyperparameter import (
    EnumHyperparameter,
)
from discrete_optimization.generic_tools.lns_mip import (
    ConstraintHandler,
    InitialSolution,
)
from discrete_optimization.generic_tools.lp_tools import MilpSolver, MilpSolverName
from discrete_optimization.knapsack.knapsack_model import (
    KnapsackModel,
    KnapsackSolution,
)
from discrete_optimization.knapsack.solvers.greedy_solvers import (
    GreedyBest,
    ResultStorage,
)
from discrete_optimization.knapsack.solvers.lp_solvers import LPKnapsack


[docs] class InitialKnapsackMethod(Enum): DUMMY = 0 GREEDY = 1
[docs] class InitialKnapsackSolution(InitialSolution): hyperparameters = [ EnumHyperparameter( name="initial_method", enum=InitialKnapsackMethod, ), ] def __init__( self, problem: KnapsackModel, initial_method: InitialKnapsackMethod, params_objective_function: ParamsObjectiveFunction, ): self.problem = problem self.initial_method = initial_method ( self.aggreg_from_sol, self.aggreg_from_dict, self.params_objective_function, ) = build_aggreg_function_and_params_objective( problem=self.problem, params_objective_function=params_objective_function )
[docs] def get_starting_solution(self) -> ResultStorage: if self.initial_method == InitialKnapsackMethod.GREEDY: greedy_solver = GreedyBest( self.problem, params_objective_function=self.params_objective_function ) return greedy_solver.solve() else: solution = self.problem.get_dummy_solution() fit = self.aggreg_from_sol(solution) return ResultStorage( list_solution_fits=[(solution, fit)], best_solution=solution, mode_optim=self.params_objective_function.sense_function, )
[docs] class ConstraintHandlerKnapsack(ConstraintHandler): def __init__(self, problem: KnapsackModel, fraction_to_fix: float = 0.9): self.problem = problem self.fraction_to_fix = fraction_to_fix self.iter = 0
[docs] def adding_constraint_from_results_store( self, milp_solver: MilpSolver, result_storage: ResultStorage ) -> Mapping[Hashable, Any]: if not isinstance(milp_solver, LPKnapsack): raise ValueError("milp_solver must a LPKnapsack for this constraint.") if milp_solver.model is None: milp_solver.init_model() if milp_solver.model is None: raise RuntimeError( "milp_solver.model must be not None after calling milp_solver.init_model()" ) subpart_item = set( random.sample( range(self.problem.nb_items), int(self.fraction_to_fix * self.problem.nb_items), ) ) current_solution = result_storage.get_best_solution() if current_solution is None: raise ValueError( "result_storage.get_best_solution() " "should not be None." ) if not isinstance(current_solution, KnapsackSolution): raise ValueError( "result_storage.get_best_solution() " "should be a KnapsackSolution." ) dict_f_fixed = {} dict_f_start = {} start = [] for c in range(self.problem.nb_items): dict_f_start[c] = current_solution.list_taken[c] if c in subpart_item: dict_f_fixed[c] = dict_f_start[c] x_var = milp_solver.variable_decision["x"] lns_constraint: Dict[Hashable, Any] = {} for key in x_var: start += [(x_var[key], dict_f_start[key])] if key in subpart_item: lns_constraint[key] = milp_solver.model.add_constr( x_var[key] == dict_f_start[key], name=str(key) ) if milp_solver.milp_solver_name == MilpSolverName.GRB: milp_solver.model.solver.update() milp_solver.model.start = start return lns_constraint
[docs] def remove_constraints_from_previous_iteration( self, milp_solver: MilpSolver, previous_constraints: Mapping[Hashable, Any] ) -> None: if not isinstance(milp_solver, LPKnapsack): raise ValueError("milp_solver must a ColoringLP for this constraint.") if milp_solver.model is None: milp_solver.init_model() if milp_solver.model is None: raise RuntimeError( "milp_solver.model must be not None after calling milp_solver.init_model()" ) milp_solver.model.remove(list(previous_constraints.values())) if milp_solver.milp_solver_name == MilpSolverName.GRB: milp_solver.model.solver.update()